Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@siit.tu.ac.th Lecture 9Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Caution

When you see $\bar{A} \bar{B} C$ or $\bar{A} \bar{B} \bar{C}$ on quiz/HW/exam, please always double-check whether the bars on the top are disconnected.

This is the K-map for
$X=\bar{A} \overline{B C}$ which is the same as $X=\bar{A} \cdot \bar{B} \cdot \bar{C}$

This is the K-map for $X=\overline{A B C}$ which is equivalent to
$X=\bar{A}+\bar{B}+\bar{C}$

Non-uniqueness

Use a K-map to minimize the following expression

$$
A B+\overline{A B}+\bar{A} B C
$$

Solution 1:AB+ $\bar{A} \bar{B}+\bar{A} C$
Solution 2: $A B+\overline{A B}+B C$

K-Map POS Minimization

- Appendix B in the textbook.
- For a POS expression in standard form, a 0 is placed on the K-map for each sum term in the expression.
- The cells that do not have a 0 are the cells for which the expression is 1 .
- Group 0s to produce instead of grouping 1s.

Combinational Logic

- Chapter 5 and 6
- Reading Assignment:
- Read Section 5-1 to 5-5.
- Definition: A combinational logic is a combination of logic gates interconnected to produce a specified Boolean function with no storage or memory capability.
- Sometimes called combinatorial logic.

SOP Implementation: AND-OR Circuit

In Sum-of-Products (SOP) form, basic combinational circuits can be directly implemented with AND-OR combinations: first forming the AND terms; then the terms are ORed together.

This is called the AND-OR configuration.

Example

Write the output expression of the following circuit as it appears in the figure and then change it to an equivalent ANDOR configuration.

Solution:

$$
\begin{aligned}
X & =(A+B) \cdot(C+D) \\
& =(A+B) \cdot C+(A+B) \cdot D \\
& =A C+B C+A D+B D
\end{aligned}
$$

Example

Write the output expression of the following circuit as it appears in the figure and then change it to an equivalent ANDOR configuration.

Remark

1. From any logic expression, you can construct a truth table.
2. From the truth table you can get a canonical sum or a minterm list. (This can be simplified to a minimal sum. In any case, you get a SOP expression)
3. Any SOP expression can be implemented using AND gates, OR gates, and inverters.

AND-OR-Invert (AOI) circuit

When the output of a SOP form is inverted, the circuit is called an AND-OR-Invert circuit.

The AOI configuration lends itself to product-of-sums (POS) implementation.

Universal gate

- The term universal refers to a property of a gate that permits any logic function to be implemented by that gate or by a combination of gates of that kind.
- Example: NAND gates, NOR gates

NAND Gate as a Universal Gate

NAND gates are sometimes called universal gates because they can be used to produce the other basic Boolean functions.

Inverter

OR gate

NOR gate

Example

Implement the following logic circuit using only NAND gates:

Solution:

Example

Implement the following logic circuit using only NAND gates:

Solution:

NOR Gate as a Universal Gate

NOR gates are also universal gates and can form all of the basic gates.

AND gate

OR gate

NAND gate

Example

Implement the following logic circuit using only NOR gates:

Solution:

